91黑料网

EN
www.world-show.cn

http://www.51cao.gov.cnEMNLP 2025 动态压缩CoT推理新方法LightThinker来了

随着 AI 技术的飞速发展,从「快思考」到「慢思考」,大语言模型(LLMs)在处理复杂推理任务上展现出惊人的能力。无论是我们熟知的思维链(CoT),还是更复杂的深度思考模式(Thinking),都让 AI 的回答日益精准、可靠。 然而,这种性能的提升并非没有代价。模型在推理过程中会产生大量的中间步骤和文本(tokens),这不仅极大地拖慢了计算速度,还对内存和计算资源造成了巨大的压力。简单来说,就是「想得越多,算得越慢,耗得越多」。 为了解决这一难题,研究者们从人类的认知过程中汲取灵感。想象一下人类在解决一个复杂数学题时的情景:我们通常会在草稿纸上写下关键的计算步骤(如下图 a 中的黄色高亮部分),而将一些辅助性的思考过程(非高亮部分)放在脑中。 本文中,来自浙江大学、蚂蚁集团等机构的研究者提出了LightThinker,它模仿了这一高效的思考模式。它训练 LLM 在推理过程中动态地将冗长的中间思考步骤压缩成紧凑的表示(gist tokens /cache tokens),然后「扔掉」原始的、繁琐的推理链,仅保留核心摘要以继续下一步的思考。 这样一来,存放在上下文窗口中的 tokens 数量被大幅削减,从而显著降低了内存占用和计算成本。 LightThinker 通过训练的方式让模型具备这种能力。这涉及到两个关键问题:「何时压缩?」和「如何压缩?」。整个过程可以概括为以下三个关键步骤: 步骤划分:首先,将模型原本冗长的完整回答 Y,按照语义或段落(即一个完整的「想法」)切分成若干个思维步骤 S1, S2, S3, ...。插入特殊指令符:在这些思维步骤之间,插入一组特殊的「指令令牌」4。这组指令符主要包含两个部分: 缓存令牌 (Cache Tokens, C):这是一组特殊的、用于存储压缩后信息的「摘要令牌」。它的作用就像是为即将产生的「思想摘要」预留的空白便签。输出令牌 (Output Token, [o]):这是一个强制性的输出信号,它的作用是告诉模型:「好了,摘要写完了,现在请基于这份摘要继续你下一步的思考」 。 经过这样的改造,原本一条完整的思考链,就变成了一个「思考步骤 1 S1 →进行压缩→ 继续思考步骤 S2 →再次压缩→ ...」的全新格式。这等于是在模型的学习材料中明确地标注出了「何时」需要进行压缩。 教会了模型「何时」压缩,下一步就是最关键的如何压缩。这主要通过一种名为 「Thought-based Attention Mask」的技术来实现,如图 2 (b) 所示。精确地控制着模型在思考时 “能看什么” 和 “不能看什么” 。 生成阶段(基于摘要生成思维):当思维步骤 Si 被成功压缩进 C 之后,更关键的一步来了。在生成下一个思绪片段 S (i+1) 时,注意力掩码会彻底「遮蔽」掉原始的思维步骤 Si。此时,模型只能「看到」最初的问题 X 和包括刚刚生成的摘要在内的所有历史摘要 。 通过这种方式,模型被迫学会仅依赖紧凑的「思想摘要」来进行连贯的、层层递进的推理,而不是依赖越来越长的原始思考全文。 经过以上两个步骤的训练,LightThinker 模型在实际推理时,就会形成一种高效的动态循环,如图 1 (b) 和图 2 (c) 所示,清晰地展示了「生成→压缩→抛弃」的动态循环过程。下面以图 1 (b) 为例进行分析: 模型接收问题,生成第一段思考(Thought 1)。触发压缩,将 Thought 1 中的核心信息压缩成紧凑的摘要(CT1)。抛弃原文,将冗长的 Thought 1 从上下文中丢弃。模型基于问题和摘要(CT1),生成第二段思考(Thought 2)。再次压缩,将 Thought 2 压缩为摘要(CT2),并丢弃 Thought 2 原文。如此循环,直到问题解决。 通过这种「即用即弃」的机制,LightThinker 确保了模型的上下文窗口始终保持在一个非常小的尺寸,从而解决了因上下文过长导致的内存爆炸和计算缓慢问题,实现了效率与性能的完美平衡。 图 3 展示了不同方法在推理过程中上下文长度的变化,其中曲线和坐标轴围城的面积为我们定义的新指标 Dependency,其意义生成 token 时需要关注 token 的数量总和。 峰值内存使用减少 70%:LightThinker 极大地节约了宝贵的内存资源。推理时间缩短 26%:在保证结果准确性的前提下,思考速度得到了显著提升。取得了准确度和效率的平衡。 当前对于加速大语言模型(LLMs)推理过程的研究主要集中在四类方法:模型量化、辅助解码、生成更少的 Token 和减少 KV 缓存。模型量化包括参数量化 [1-2] 和 KV 缓存量化 [3-4],辅助解码主要包括投机采样,本节将重点关注后两类方法。 需要注意的是,生成长文本和理解长文本代表着不同的应用场景,因此,专门针对长文本生成阶段的加速方法(例如,预填充阶段加速技术如 AutoCompressor [5]、ICAE [6]、LLMLingua [7]、Activation Beacon [8]、SnapKV [9] 和PyramidKV[10])不在此处讨论。以下是后两类方法的详细概述。 离散 Token 减少通过提示工程 Prompt [11-13]、指令微调 [14-15] 或强化学习 [16-17] 等技术来引导 LLM 在推理过程中使用更少的离散 token。例如,TALE [11] 提示 LLM 在预定义的 token 预算内完成任务。Arora 和 Zanette [16] 构建特定数据集并采用强化学习奖励机制来鼓励模型生成简洁准确的输出,从而减少 token 使用量。连续 Token 替换这些方法 [18-19] 探索使用连续空间 token 代替传统的离散词汇 token。一个代表性例子是CoConut[18],它利用课程学习来训练 LLM 使用连续 token 进行推理。无 Token 使用通过在模型层之间内化推理过程,在推理过程中直接生成最终答案而不需要中间 token [20-21]。 这三种策略都是在模型训练后实施的,推理过程中不需要额外干预。从技术上讲,这些方法的加速效果依次递增,但代价是 LLM 的泛化性能逐渐下降。此外,第一种策略并不能显著减少 GPU 内存使用。 基于剪枝的策略设计特定的淘汰策略 [22-25] 在推理过程中保留重要的 token。例如,StreamingLLM[23] 认为初始的 sink token 和最近的 token 是重要的;H2O [22] 关注具有高历史注意力分数的 token;SepLLM[24] 强调对应于标点符号的 token 是重要的。基于合并的策略引入锚点 token,训练 LLM 将历史重要信息压缩到这些 token 中,从而实现 KV 缓存合并 [26]。 这两种策略都需要在推理过程中进行干预。关键区别在于:第一种策略是无需训练的,但对每个生成的 token 都要应用淘汰策略;而第二种策略是基于训练的方法,允许 LLM 自主决定何时应用淘汰策略。 受限于自身的数据重构方案(目前分割思维步骤是依赖规则,而不是基于语义)和训练数据(约 16K 训练数据),本文方法在数学相关的任务上表现并不出色。 如下图所示,展示了 LightThinker 在 GSM8K 上的一个 Bad Case。研究者观察到,尽管 LLM 在思考过程中得出了正确答案(见上图中的 Model's Thoughts 字段),但在最终输出中却出现了错误(见图中的 Model's Solution 字段)。 具体来说,在 Model's Solution 字段的第三句话中,第一次出现的「4000」是错误的。这表明在第二次压缩步骤中发生了信息丢失(理论上,「8000」、「4000」和「24000」都应该被压缩,但 LLM 只压缩了「4000」和「24000」),导致后续的推理错误。这类错误在 GSM8K 数据集中频繁出现,表明当前的压缩方法对数值的敏感度还不够。

http://www.51cao.gov.cn
http://www.51cao.gov.cn据报道,苹果公司被作家格雷迪·亨德里克斯和詹妮弗·罗伯逊起诉,指控其非法使用受版权保护的书籍来训练人工智能系统。诉讼称苹果未经同意复制了受保护作品且未给予任何补偿。该诉讼是人工智能时代知识产权保护法律斗争的一部分。此前,人工智能初创公司Anthropic同意支付15亿美元和解类似诉讼,而微软、Meta和OpenAI也面临类似指控。苹果被指使用盗版书籍训练其“OpenELM”大型语言模型,目前苹果和原告律师均未回应置评请求。比利时:莱科姆特19分、万维恩10分7板3助、范弗利特9分3板、勒德根8分3板2助、巴科6分6板1助2帽、姆韦玛6分4板5助、图姆巴4分6板、施瓦茨4分3板2助2帽、范-登-艾德4分1助、门纳斯1板3助http://www.51cao.gov.cn17.肠.13.苍辞尘-17.肠-起草视在哪一细节的打磨持续到了最后一次现场演练。除了此前确定的静电布,团队还专门增设了一支检测小组——检测员手中举着一面小镜子,逐一对所有气球放飞装置的顶部进行细致查看。当我们仔细审视这位姑娘的履历,很难不发出赞叹,谁看了都会忍不住夸一句“别人家的孩子”。她毕业于211高校,拥有硕士学位,这在当今社会已然是高学历人才的代表。她不仅是一名光荣的党员,还荣获了省级优秀毕业生的称号,大学期间更是斩获国家奖学金,并且担任兼职辅导员,展现出了卓越的综合素质和领导能力。如此耀眼的履历,仿佛为她铺就了一条通往成功的康庄大道。
20251017 ? http://www.51cao.gov.cn想象一下,如果你的电脑和手机能够像人类一样"看懂"屏幕上的内容,并且能够自动帮你完成各种操作任务,那会是什么样的体验?美团的研究团队就实现了这样一个令人惊叹的AI助手系统。这个被称为UItron的系统,就像是给计算机装上了一双能够理解屏幕内容的"眼睛"和一双能够精确操作的"手"。大战尼姑2高清免费观看中文不过在伊尼戈离队后,弗里克更倾向于让马丁踢左中卫。与此同时,18岁的托伦茨在季前备战中表现出色,已经在西甲首轮上演了巴萨一队首秀。
http://www.51cao.gov.cn
? 孙辰记者 杨芳 摄
20251017 ? http://www.51cao.gov.cn尽管谷歌在最新判决中暂时避免了最严厉的拆分措施,但美国司法部明确表示不会就此止步,誓言继续推进对大型科技公司的反垄断行动。轮流和两个男人一起很容易染病吗刘维给许多泳馆做过检测。他提到,游泳馆和水上乐园在验收时必须拿着第三方公司的检测报告,去体育局申请高危证明。
http://www.51cao.gov.cn
? 张国喆记者 吕延 摄
? 张凯则指出,虽然地块规模有限,但其独特的地理位置和CBD核心区的稀缺属性,使该地块成为市场关注焦点。在当前政策环境逐步宽松、市场分化加剧的背景下,呼家楼地块的出让不仅考验开发商的运营能力和产品打造水平,其成交结果也将为北京核心区高端住宅市场提供重要的价格参考指标,对未来市场走势具有显著的指示意义。www.51cao.gov.cn
扫一扫在手机打开当前页